Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.828
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 72(4): 365-373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569867

RESUMO

Obesity is known to be associated with increased inflammation and dysregulated autophagy, both of which contribute to insulin resistance. Saikosaponin-A (SSA) has been reported to exhibit anti-inflammatory and lipid-lowering properties. In this research, we employed a combination of computational modeling and animal experiments to explore the effects of SSA. Male C57BL/6 mice were categorized into four groups: normal diet, high-fat diet (HFD), HFD + atorvastatin 10 mg/kg, and HFD + SSA 10 mg/kg. We conducted oral glucose and fat tolerance tests to assess metabolic parameters and histological changes. Furthermore, we evaluated the population of Kupffer cells (KCs) and examined gene expressions related to inflammation and autophagy. Computational analysis revealed that SSA displayed high binding affinity to tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, fibroblast growth factor 21 (FGF21), and autophagy-related 7 (ATG7). Animal study demonstrated that SSA administration improved fasting and postprandial glucose levels, homeostatic model assessment of insulin resistance (HOMA-IR) index, as well as triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol (LDL-C)-cholesterol, and high-density lipoprotein cholesterol (HDL-C)-cholesterol levels in HFD-fed mice. Moreover, SSA significantly reduced liver weight and fat accumulation, while inhibiting the infiltration and M1 activation of KCs. At the mRNA level, SSA downregulated TNF-α and NF-κB expression, while upregulating FGF21 and ATG7 expression. In conclusion, our study suggests that SSA may serve as a therapeutic agent for addressing the metabolic complications associated with obesity. This potential therapeutic effect is attributed to the suppression of inflammatory cytokines and the upregulation of FGF21 and ATG7.


Assuntos
Experimentação Animal , Resistência à Insulina , Ácido Oleanólico/análogos & derivados , Saponinas , Camundongos , Masculino , Animais , Resistência à Insulina/fisiologia , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Fígado , Inflamação/metabolismo , Glucose/metabolismo , Colesterol , Dieta Hiperlipídica/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Insulina/metabolismo
2.
J Sep Sci ; 47(7): e2300901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605456

RESUMO

An effective method by high-speed countercurrent chromatography coordinated with silver nitrate for the preparative separation of sterones and triterpenoid saponins from Achyranthes bidentata Blume was developed. Methyl tert-butyl ether/n-butanol/acetonitrile/water (4:2:3:8, v/v/v/v) was selected for 20-hydroxyecdysone (compound 1), chikusetsusaponin IVa methyl ester (compound 4), 2'-glycan-11-keto-pigmented saponin V (compound 5), as well as a pair of isomers of 25S-inokosterone (compound 2) and 25R-inokosterone (compound 3), which were further purified by silver nitrate coordinated high-speed countercurrent chromatography. What is more, dichloromethane/methanol/isopropanol/water (6:6:1:4, v/v/v/v) was applied for calenduloside E (compound 6), 3ß-[(O-ß-d-glucuronopyranosyl)-oxy]-oleana-11,13-dien-28-oic acid (compound 7), zingibroside R1 (compound 8) and chikusetsusaponin IVa (compound 9). Adding Ag+ to the solvent system resulted in unique selectivity for 25R/25S isomers of inokosterone, which increased the complexing capability and stability of Ag+ coordinated 25S-inokosterone, as well as the α value between them. These results were further confirmed by the computational calculation of geometry optimization and frontier molecular orbitals assay. Comprehensive mass spectrometry and nuclear magnetic resonance analysis demonstrated the structures of the obtained compounds.


Assuntos
Achyranthes , Colestenos , Ácido Oleanólico/análogos & derivados , Saponinas , Distribuição Contracorrente , Achyranthes/química , Nitrato de Prata , Extratos Vegetais/química , Água/química , Cromatografia Líquida de Alta Pressão/métodos
3.
Appl Microbiol Biotechnol ; 108(1): 282, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573330

RESUMO

Oleanane-type ginsenosides are a class of compounds with remarkable pharmacological activities. However, the lack of effective preparation methods for specific rare ginsenosides has hindered the exploration of their pharmacological properties. In this study, a novel glycoside hydrolase PlGH3 was cloned from Paenibacillus lactis 154 and heterologous expressed in Escherichia coli. Sequence analysis revealed that PlGH3 consists of 749 amino acids with a molecular weight of 89.5 kDa, exhibiting the characteristic features of the glycoside hydrolase 3 family. The enzymatic characterization results of PlGH3 showed that the optimal reaction pH and temperature was 8 and 50 °C by using p-nitrophenyl-ß-D-glucopyranoside as a substrate, respectively. The Km and kcat values towards ginsenoside Ro were 79.59 ± 3.42 µM and 18.52 s-1, respectively. PlGH3 exhibits a highly specific activity on hydrolyzing the 28-O-ß-D-glucopyranosyl ester bond of oleanane-type saponins. The mechanism of hydrolysis specificity was then presumably elucidated through molecular docking. Eventually, four kinds of rare oleanane-type ginsenosides (calenduloside E, pseudoginsenoside RP1, zingibroside R1, and tarasaponin VI) were successfully prepared by biotransforming total saponins extracted from Panax japonicus. This study contributes to understanding the mechanism of enzymatic hydrolysis of the GH3 family and provides a practical route for the preparation of rare oleanane-type ginsenosides through biotransformation. KEY POINTS: • The glucose at C-28 in oleanane-type saponins can be directionally hydrolyzed. • Mechanisms to interpret PlGH3 substrate specificity by molecular docking. • Case of preparation of low-sugar alternative saponins by directed hydrolysis.


Assuntos
Ginsenosídeos , Ácido Oleanólico/análogos & derivados , Paenibacillus , Saponinas , Glicosídeo Hidrolases/genética , Simulação de Acoplamento Molecular , Escherichia coli/genética , Ésteres
4.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612411

RESUMO

Biofilm formation plays a crucial role in the pathogenesis of Candida albicans and is significantly associated with resistance to antifungal agents. Tea seed saponins, a class of non-ionic triterpenes, have been proven to have fungicidal effects on planktonic C. albicans. However, their anti-biofilm activity and mechanism of action against C. albicans remain unclear. In this study, the effects of three Camellia sinensis seed saponin monomers, namely, theasaponin E1 (TE1), theasaponin E2 (TE2), and assamsaponin A (ASA), on the metabolism, biofilm development, and expression of the virulence genes of C. albicans were evaluated. The results of the XTT reduction assay and crystal violet (CV) staining assay demonstrated that tea seed saponin monomers concentration-dependently suppressed the adhesion and biofilm formation of C. albicans and were able to eradicate mature biofilms. The compounds were in the following order in terms of their inhibitory effects: ASA > TE1 > TE2. The mechanisms were associated with reductions in multiple crucial virulence factors, including cell surface hydrophobicity (CSH), adhesion ability, hyphal morphology conversion, and phospholipase activity. It was further demonstrated through qRT-PCR analysis that the anti-biofilm activity of ASA and TE1 against C. albicans was attributed to the inhibition of RAS1 activation, which consequently suppressed the cAMP-PKA and MAPK signaling pathways. Conversely, TE2 appeared to regulate the morphological turnover and hyphal growth of C. albicans via a pathway that was independent of RAS1. These findings suggest that tea seed saponin monomers are promising innovative agents against C. albicans.


Assuntos
Candida albicans , Ácido Oleanólico/análogos & derivados , Saponinas , Saponinas/farmacologia , Biofilmes , Chá
5.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612877

RESUMO

Hedera helix is a traditional medicinal plant. Its primary active ingredients are oleanane-type saponins, which have extensive pharmacological effects such as gastric mucosal protection, autophagy regulation actions, and antiviral properties. However, the glycosylation-modifying enzymes responsible for catalyzing oleanane-type saponin biosynthesis remain unidentified. Through transcriptome, cluster analysis, and PSPG structural domain, this study preliminarily screened four candidate UDP-glycosyltransferases (UGTs), including Unigene26859, Unigene31717, CL11391.Contig2, and CL144.Contig9. In in vitro enzymatic reactions, it has been observed that Unigene26859 (HhUGT74AG11) has the ability to facilitate the conversion of oleanolic acid, resulting in the production of oleanolic acid 28-O-glucopyranosyl ester. Moreover, HhUGT74AG11 exhibits extensive substrate hybridity and specific stereoselectivity and can transfer glycosyl donors to the C-28 site of various oleanane-type triterpenoids (hederagenin and calenduloside E) and the C-7 site of flavonoids (tectorigenin). Cluster analysis found that HhUGT74AG11 is clustered together with functionally identified genes AeUGT74AG6, CaUGT74AG2, and PgUGT74AE2, further verifying the possible reason for HhUGT74AG11 catalyzing substrate generalization. In this study, a novel glycosyltransferase, HhUGT74AG11, was characterized that plays a role in oleanane-type saponins biosynthesis in H. helix, providing a theoretical basis for the production of rare and valuable triterpenoid saponins.


Assuntos
Hedera , Ácido Oleanólico/análogos & derivados , Saponinas , Glicosiltransferases/genética
6.
Cancer Med ; 13(8): e7202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659391

RESUMO

BACKGROUND: Non-apoptotic cell death is presently emerging as a potential direction to overcome the apoptosis resistance of cancer cells. In the current study, a natural plant agent α-hederin (α-hed) induces caspase-independent paraptotic modes of cell death. PURPOSE: The present study is aimed to investigate the role of α-hed induces paraptosis and the associated mechanism of it. METHODS: The cell proliferation was detected by CCK-8. The cytoplasm organelles were observed under electron microscope. Calcium (Ca2+) level was detected by flow cytometry. Swiss Target Prediction tool analyzed the potential molecule targets of α-hed. Molecular docking methods were used to evaluate binding abilities of α-hed with targets. The expressions of genes and proteins were analyzed by RT-qPCR, western blotting, immunofluorescence, and immunohistochemistry. Xenograft models in nude mice were established to evaluate the anticancer effects in vivo. RESULTS: α-hed exerted significant cytotoxicity against a panel of CRC cell lines by inhibiting proliferation. Besides, it induced cytoplasmic vacuolation in all CRC cells. Electron microscopy images showed the aberrant dilation of endoplasmic reticulum and mitochondria. Both mRNA and protein expressions of Alg-2 interacting proteinX (Alix), the marker of paraptosis, were inhibited by α-hed. Besides, both Swiss prediction and molecular docking showed that the structure of α-hed could tightly target to GPCRs. GPCRs were reported to activate the phospholipase C (PLC)-ß3/ inositol 1,4,5-trisphosphate receptor (IP3R)/ Ca2+/ protein kinase C alpha (PKCα) pathway, and we then found all proteins and mRNA expressions of PLCß3, IP3R, and PKCα were increased by α-hed. After blocking the GPCR signaling, α-hed could not elevate Ca2+ level and showed less CRC cell cytotoxicity. MAPK cascade is the symbol of paraptosis, and we then demonstrated that α-hed activated MAPK cascade by elevating Ca2+ flux. Since non-apoptotic cell death is presently emerging as a potential direction to overcome chemo-drug resistance, we then found α-hed also induced paraptosis in 5-fluorouracil-resistant (5-FU-R) CRC cells, and it reduced the growth of 5-FU-R CRC xenografts. CONCLUSIONS: Collectively, our findings proved α-hed as a promising candidate for inducing non-apoptotic cell death, paraptosis. It may overcome the resistance of apoptotic-based chemo-resistance in CRC.


Assuntos
Cálcio , Proliferação de Células , Neoplasias Colorretais , Camundongos Nus , Simulação de Acoplamento Molecular , Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Ácido Oleanólico/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Saponinas/farmacologia , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Camundongos Endogâmicos BALB C , 60706
7.
Mediators Inflamm ; 2024: 9078794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590775

RESUMO

Background: Acute pancreatitis (AP) is a clinically frequent acute abdominal condition, which refers to an inflammatory response syndrome of edema, bleeding, and even necrosis caused by abnormal activation of the pancreas's own digestive enzymes. Intestinal damage can occur early in the course of AP and is manifested by impaired intestinal mucosal barrier function, and inflammatory reactions of the intestinal mucosa, among other factors. It can cause translocation of intestinal bacteria and endotoxins, further aggravating the condition of AP. Therefore, actively protecting the intestinal mucosal barrier, controlling the progression of intestinal inflammation, and improving intestinal dynamics in the early stages of AP play an important role in enhancing the prognosis of AP. Methods: The viability and apoptosis of RAW264.7 cells treated with Esculentoside A (EsA) and/or lipopolysaccharide were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry, respectively. The expression of apoptosis-related proteins and NF-κB signaling pathway-related proteins were detected by western blot (WB). An enzyme-linked immunosorbent assay was used to measure TNF-α and IL-6 secretion. Results: In vitro experiments demonstrated that EsA not only promoted the apoptosis of inflammatory cells but also reduced the secretion of TNF-α and IL-6 in a dose-dependent manner. Additionally, it inhibited the activation of the NF-κB signaling pathway by decreasing the expression of phosphorylated-p65(p-p65) and elevating the expression of IκBα. Similarly, in vivo experiments using a rat AP model showed that EsA inhibited the expression of p-p65 elevating the expression of IκBα in the intestinal tissues of the rat AP model and promoting the apoptosis of inflammatory cells in the intestinal mucosa in vivo experiments, while improving the pathological outcome of the pancreatic and intestinal tissues. Conclusion: Our results suggest that EsA can reduce intestinal inflammation in the rat AP model and that EsA may be a candidate for treating intestinal inflammation in AP and further arresting AP progression.


Assuntos
NF-kappa B , Ácido Oleanólico/análogos & derivados , Pancreatite , Saponinas , Ratos , Animais , NF-kappa B/metabolismo , Pancreatite/metabolismo , Inibidor de NF-kappaB alfa , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Doença Aguda , Inflamação/tratamento farmacológico
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 515-522, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597443

RESUMO

OBJECTIVE: To explore the inhibitory effect of saikosonin a (SSa) on pentylenetetrazol-induced acute epilepsy seizures in a mouse model of depression and explore the mechanism mediating this effect. METHODS: Male C57BL/6J mouse models of depression was established by oral administration of corticosterone via drinking water for 3 weeks, and acute epileptic seizures were induced by intraperitoneal injection of a single dose of pentylenetetrazole. The effect of intraperitoneal injection of SSa prior to the treatment on depressive symptoms and epileptic seizures were assessed using behavioral tests, epileptic seizure grading and hippocampal morphology observation. ELISA was used to detect blood corticosterone levels of the mice, and RTqPCR was performed to detect the pro- and anti-inflammatory factors. Microglia activation in the mice was observed using immunofluorescence staining. RESULTS: The mouse model of corticosterone-induced depression showed body weight loss and obvious depressive behaviors with significantly increased serum corticosterone level (all P < 0.05). Compared with those with pentylenetetrazole-induced epilepsy alone, the epileptic mice with comorbid depression showed significantly shorter latency of epileptic seizures, increased number, grade and duration of of seizures, reduced Nissl bodies in hippocampal CA1 and CA3 neurons, increased number of Iba1-positive cells, and significantly enhanced hippocampal expressions of IL-1ß, IL-10, TNF-α and IFN-γ. Pretreatment of the epileptic mice with SSa significantly prolonged the latency of epileptic seizures, reduced the number, duration, and severity of seizures, increased the number of Nissl bodies, decreased the number of Iba1-positive cells, and reduced the expression levels of IL-1ß, IL-10, TNF-α, and IFN-γ in the hippocampus (P < 0.05). CONCLUSION: Depressive state aggravates epileptic seizures, increases microglia activation, and elevates inflammation levels. SSA treatment can alleviate acute epileptic seizures in mouse models of depression possibly by suppressing microglia activation-mediated inflammation.


Assuntos
Epilepsia , Ácido Oleanólico/análogos & derivados , Pentilenotetrazol , Saponinas , Masculino , Camundongos , Animais , Pentilenotetrazol/efeitos adversos , Interleucina-10 , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Depressão , Corticosterona/metabolismo , Corticosterona/farmacologia , Corticosterona/uso terapêutico , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Modelos Animais de Doenças
9.
Chem Biol Drug Des ; 103(3): e14481, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38458969

RESUMO

Studies have shown that saikosaponin D (SSD) has favorable neurotherapeutic effects. Therefore, the objective of this study was to explore the efficacy and possible molecular mechanisms of SSD on pilocarpine (PP)-induced astrocyte injury. Primary astrocytes were isolated from juvenile rats and identified using immunofluorescence. The cells were treated with PP and/or SSD for 6 h and 12 h, respectively, followed by measurement of their viability through 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of Glial fibrillary acidic protein (GFAP), C3, S100 calcium binding protein A10 (S100a10), pentraxin 3 (Ptx3), toll-like receptor 4 (TLR4), and RAG in astrocytes after different treatments. Enzyme-linked immunosorbent assay and biochemical tests were utilized to evaluate the level of inflammatory factors [interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α)] secreted by cells and the content of oxidative stress-related factors (malondialdehyde [MDA] and glutathione [GSH]) or enzyme activity (catalase [CAT] and glutathione peroxidase [GPX]) in cells. The JC-1 mitochondrial membrane potential (MMP) fluorescence probe was used to measure the MMP in astrocytes. Additionally, western blot was applied to test the expression of proteins related to the nod-like receptor protein 3 (NLRP3)/caspase-1 signaling pathway. PP treatment (1 mM) induced cell injury by significantly reducing the viability of astrocytes and expression of cellular markers. SSD treatment (4 µM) had no toxicity to astrocytes. Besides, SSD (4 µM) treatment could significantly up-regulate the cell viability and marker expression of PP-induced astrocytes. Furthermore, SSD could be employed to inhibit inflammation (reduce IL-1ß, IL-6, and TNF-α levels) and oxidative stress (decrease MDA level, elevate GSH level, the activity of CAT and GPX), and ameliorate mitochondrial dysfunction (upregulate JC-1 ratio) in PP-induced astrocytes. Moreover, further mechanism exploration revealed that SSD treatment significantly reduced the activity of the NLRP3/caspase-1 signaling pathway activated by PP induction. SSD increased cell viability, inhibited inflammation and oxidative stress response, and ameliorated mitochondrial dysfunction in PP-induced astrocyte injury model, thus playing a neuroprotective role. The mechanism of SSD may be related to the inhibition of the NLRP3/caspase-1 inflammasome.


Assuntos
Benzimidazóis , Carbocianinas , Doenças Mitocondriais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Oleanólico/análogos & derivados , Saponinas , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Pilocarpina/toxicidade , Fator de Necrose Tumoral alfa/genética , Caspases/metabolismo , Interleucina-6 , Transdução de Sinais , Inflamação/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-38442634

RESUMO

In this work, a high-speed shear extraction off-line coupling high-speed countercurrent chromatography method was developed to separate maslinic acid and oleanolic acid from olive pomace. To improve extraction efficiency, the polar disparity between maslinic acid and oleanolic acid necessitated the concurrent utilization of both polar and non-polar solvents during high-speed shear extraction. Then, the high-speed shear extraction was directly feed to high-speed countercurrent chromatography for subsequently separation. A total of 250 min were needed to complete the extraction and separation process. This yielded two molecules from 3.3 g of defatted olive pomace: 7.2 mg of 93.8 % pure maslinic acid and 2.3 mg of 90.1 % pure oleanolic acid, both determined by HPLC at 210 nm. Furthermore, the compounds exhibited inhibitory activity against Escherichia coli and Staphylococcus aureus. At a concentration of 100 µg/mL, its efficacy in inhibiting hyaluronidase was comparable to that of the standard drug indomethacin. Compared with the conventional separation method, this coupled technique reduced the whole time due to the direct injection of sample extraction solution. This technique provides a useful approach for the separation of natural products with significant polarity differences.


Assuntos
Olea , Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Triterpenos , Ácido Oleanólico/análise , Olea/química , Distribuição Contracorrente , Antibacterianos/farmacologia , Triterpenos/química , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
11.
Int Immunopharmacol ; 130: 111749, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38430804

RESUMO

AIMS: Saikosaponin F (SsF) is one of the major active ingredients of Radix Bupleuri, an herb widely used in the treatment of depression. Studies have shown that dry eye disease often occurs together with depression. The aim of this study is to investigate whether SsF can improve depression-associated dry eye disease and explore the underlying mechanism. METHODS: Behavioral test was used to verify the effect of SsF on CUMS-induced depression-like behaviors in mice. Corneal fluorescein staining, phenol red cotton thread test and periodic acid-Schiff (PAS) staining were used to observe the effect of SsF on depression-associated dry eye disease. Western blot (WB) was performed to observe the expression of TAK1 protein and key proteins of NF-κB and MAPK (P38) inflammatory pathways in the hippocampus and cornea. Immunohistochemical staining was used to observe the expression of microglia, and immunoprecipitation was used to observe K63-linked TAK1 ubiquitination. Subsequently, we constructed a viral vector sh-TAK1 to silence TAK1 protein to verify whether SsF exerted its therapeutic effect based on TAK1. The expression of inflammatory factors such as IL-1ß, TNF-α and IL-18 in hippocampus and cornea were detected by ELISA. Overexpression of TRIM8 (OE-TRIM8) by viral vector was used to verify whether SsF improved depression-associated dry eye disease based on TRIM8. RESULTS: SsF treatment significantly improved the depression-like behavior, increased tear production and restored corneal injury in depression-related dry eye model mice. SsF treatment downregulated TAK1 expression and TRIM8-induced K63-linked TAK1 polyubiquitination, while inhibiting the activation of NF-κB and MAPK (P38) inflammatory pathways and microglial expression. In addition, selective inhibition of TAK1 expression ameliorated depression-associated dry eye disease, while overexpression of TRIM8 attenuated the therapeutic effect of SsF on depression-associated dry eye disease. CONCLUSION: SsF inhibited the polyubiquitination of TAK1 by acting on TRIM8, resulting in the downregulation of TAK1 expression, inhibition of inflammatory response, and improvement of CUMS-induced depression-associated dry eye disease.


Assuntos
Antidepressivos , Depressão , Síndromes do Olho Seco , MAP Quinase Quinase Quinases , NF-kappa B , Ácido Oleanólico , Saponinas , Ubiquitina-Proteína Ligases , Animais , Masculino , Camundongos , Depressão/complicações , Depressão/tratamento farmacológico , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/etiologia , Inflamação/tratamento farmacológico , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , NF-kappa B/metabolismo , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Saponinas/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
12.
J Chem Ecol ; 50(3-4): 168-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443712

RESUMO

Many plant species, particularly legumes, protect themselves with saponins. Previously, a correlation was observed between levels of oleanolic acid-derived saponins, such as hederagenin-derived compounds, in the legume Medicago truncatula and caterpillar deterrence. Using concentrations that reflect the foliar levels of hederagenin-type saponins, the sapogenin hederagenin was not toxic to 4th instar caterpillars of the cabbage looper Trichoplusia ni nor did it act as a feeding deterrent. Female caterpillars consumed more diet than males, presumably to obtain the additional nutrients required for oogenesis, and are, thus, exposed to higher hederagenin levels. When fed the hederagenin diet, male caterpillars expressed genes encoding trypsin-like proteins (LOC113500509, LOC113501951, LOC113501953, LOC113501966, LOC113501965, LOC113499659, LOC113501950, LOC113501948, LOC113501957, LOC113501962, LOC113497819, LOC113501946, LOC113503910) as well as stress-responsive (LOC113503484, LOC113505107) proteins and cytochrome P450 6B2-like (LOC113493761) at higher levels than females. In comparison, female caterpillars expressed higher levels of cytochrome P450 6B7-like (LOC113492289). Bioinformatic tools predict that cytochrome P450s could catalyze the oxygenation of hederagenin which would increase the hydrophilicity of the compound. Expression of a Major Facilitator Subfamily (MFS) transporter (LOC113492899) showed a hederagenin dose-dependent increase in gene expression suggesting that this transporter may be involved in sapogenin efflux. These sex-related differences in feeding and detoxification should be taken into consideration in insecticide evaluations to minimize pesticide resistance.


Assuntos
Mariposas , Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Transcriptoma , Animais , Feminino , Masculino , Saponinas/metabolismo , Saponinas/química , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Mariposas/efeitos dos fármacos , Mariposas/fisiologia , Mariposas/genética , Transcriptoma/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Caracteres Sexuais
13.
Toxicon ; 241: 107679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447765

RESUMO

The search for mechanism-based anti-inflammatory therapies is of fundamental importance to avoid undesired off-target effects. Phospholipase A2 (PLA2) activity is a potential molecular target for anti-inflammatory drugs because it fuels arachidonic acid needed to synthesize inflammation mediators, such as prostaglandins. Herein, we aim to investigate the molecular mechanism by which ß-keto amyrin isolated from a methanolic extract of Cryptostegia grandiflora R. Br. Leaves can inhibit inflammation caused by Daboia russellii viper (DR) venom that mainly contains PLA2. We found that ß-keto amyrin neutralizes DR venom-induced paw-edema in a mouse model. Molecular docking of PLA2 with ß-keto amyrin complex resulted in a higher binding energy score of -8.86 kcal/mol and an inhibition constant of 611.7 nM. Diclofenac had a binding energy of -7.04 kcal/mol and an IC50 value of 620 nM, which predicts a poorer binding interaction than ß-keto amyrin. The higher conformational stability of ß-keto amyrin interaction compared to diclofenac is confirmed by molecular dynamics simulation. ß-keto amyrin isolated from C. grandiflora inhibits the PLA2 activity contained in Daboia russellii viper venom. The anti-inflammatory property of ß-keto amyrin is due to its direct binding into the active site of PLA2, thus inhibiting its enzyme activity.


Assuntos
Apocynaceae , Víbora de Russell , Inflamação , Ácido Oleanólico , Venenos de Víboras , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Apocynaceae/química , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Simulação de Acoplamento Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Venenos de Víboras/química , Venenos de Víboras/toxicidade
14.
J Cell Mol Med ; 28(6): e18131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426931

RESUMO

Postherpetic neuralgia (PHN) is a notorious neuropathic pain featuring persistent profound mechanical hyperalgesia with significant negative impact on patients' life quality. CDDO can regulate inflammatory response and programmed cell death. Its derivative also protects neurons from damages by modulating microglia activities. As a consequence of central and peripheral sensitization, applying neural blocks may benefit to minimize the risk of PHN. This study aimed to explore whether CDDO could generate analgesic action in a PHN-rats' model. The behavioural test was determined by calibrated forceps testing. The number of apoptotic neurons and degree of glial cell reaction were assessed by immunofluorescence assay. Activation of PKC-δ and the phosphorylation of Akt were measured by western blots. CDDO improved PHN by decreasing TRPV1-positive nociceptive neurons, the apoptotic neurons, and reversed glial cell reaction in adult rats. It also suppressed the enhanced PKC-δ and p-Akt signalling in the sciatic nerve, dorsal root ganglia (DRG) and spinal dorsal horn. Our research is the promising report demonstrating the analgesic and neuroprotective action of CDDO in a PHN-rat's model by regulating central and peripheral sensitization targeting TRPV1, PKC-δ and p-Akt. It also is the first study to elucidate the role of oligodendrocyte in PHN.


Assuntos
Neuralgia Pós-Herpética , Neuralgia , Ácido Oleanólico/análogos & derivados , Humanos , Adulto , Ratos , Animais , Neuralgia Pós-Herpética/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neuralgia/metabolismo , Analgésicos , Gânglios Espinais/metabolismo , Canais de Cátion TRPV/metabolismo
15.
Molecules ; 29(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474432

RESUMO

Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii that is highly prevalent worldwide. Although the infection is asymptomatic in immunocompetent individuals, it severely affects immunocompromised individuals, causing conditions such as encephalitis, myocarditis, or pneumonitis. The limited therapeutic efficacy of drugs currently used to treat toxoplasmosis has prompted the search for new therapeutic alternatives. The aim of this study was to determine the anti-Toxoplasma activity of extracts obtained from two species of the genus Tabebuia. Twenty-six extracts, 12 obtained from Tabebuia chrysantha and 14 from Tabebuia rosea, were evaluated by a colorimetric technique using the RH strain of T. gondii that expresses ß-galactosidase. Additionally, the activity of the promising extracts and their active compounds was evaluated by flow cytometry. ß-amyrin was isolated from the chloroform extract obtained from the leaves of T. rosea and displayed important anti-Toxoplasma activity. The results show that natural products are an important source of new molecules with considerable biological and/or pharmacological activity.


Assuntos
Encefalite , Ácido Oleanólico/análogos & derivados , Tabebuia , Toxoplasma , Toxoplasmose , Humanos , Toxoplasmose/tratamento farmacológico
16.
Pharmacol Res ; 201: 107090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309381

RESUMO

Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.


Assuntos
Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Depressão/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Plasticidade Neuronal
17.
J Orthop Surg Res ; 19(1): 151, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389105

RESUMO

OBJECTIVE: This study was to investigate the underlying mechanism by which Saikosaponin D (SSD) mitigates the inflammatory response associated with osteoarthritis (OA) and regulates autophagy through upregulation of microRNA (miR)-199-3p and downregulation of transcription Factor-4 (TCF4). METHODS: A mouse OA model was established. Mice were intragastrically administered with SSD (0, 5, 10 µmol/L) or injected with miR-199-3p antagomir into the knee. Then, pathological changes in cartilage tissues were observed. Normal chondrocytes and OA chondrocytes were isolated and identified. Chondrocytes were treated with SSD and/or transfected with oligonucleotides or plasmid vectors targeting miR-199-3p and TCF4. Cell viability, apoptosis, inflammation, and autophagy were assessed. miR-199-3p and TCF4 expressions were measured, and their targeting relationship was analyzed. RESULTS: In in vivo experiments, SSD ameliorated cartilage histopathological damage, decreased inflammatory factor content and promoted autophagy in OA mice. miR-199-3p expression was downregulated and TCF4 expression was upregulated in cartilage tissues of OA mice. miR-199-3p expression was upregulated and TCF4 expression was downregulated after SSD treatment. Downregulation of miR-199-3p attenuated the effect of SSD on OA mice. In in vitro experiments, SSD inhibited the inflammatory response and promoted autophagy in OA chondrocytes. Downregulation of miR-199-3p attenuated the effect of SSD on OA chondrocytes. In addition, upregulation of miR-199-3p alone inhibited inflammatory responses and promoted autophagy in OA chondrocytes. miR-199-3p targeted TCF4. Upregulation of TCF4 attenuated the effects of miR-199-3p upregulation on OA chondrocytes. CONCLUSIONS: SSD alleviates inflammatory response and mediates autophagy in OA via elevating miR-199-3p to target TCF4.


Assuntos
MicroRNAs , Ácido Oleanólico/análogos & derivados , Osteoartrite , Saponinas , Camundongos , Animais , MicroRNAs/metabolismo , Transdução de Sinais , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Condrócitos/metabolismo , Autofagia/genética , Apoptose
18.
CNS Neurosci Ther ; 30(2): e14581, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421141

RESUMO

AIMS: We aimed to explore the role and molecular mechanism of polygalacic acid (PA) extracted from traditional Chinese medicine Polygala tenuifolia in the treatment of Alzheimer's disease (AD). METHODS: The network pharmacology analysis was used to predict the potential targets and pathways of PA. Molecular docking was applied to analyze the combination between PA and core targets. Aß42 oligomer-induced AD mice model and microglia were used to detect the effect of PA on the release of pro-inflammatory mediators and its further mechanism. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of PA on activating microglia-mediated neuronal apoptosis. RESULTS: We predict that PA might regulate inflammation by targeting PPARγ-mediated pathways by using network pharmacology. In vivo study, PA could attenuate cognitive deficits and inhibit the expression levels of inflammation-related factors. In vitro study, PA can also decrease the production of activated microglia-mediated inflammatory cytokines and reduce the apoptosis of N2a neuronal cells. PPARγ inhibitor GW9662 inversed the neuroprotective effect of PA. Both in vivo and in vitro studies showed PA might attenuate the inflammation through the PPARγ/NF-κB pathway. CONCLUSIONS: PA is expected to provide a valuable candidate for new drug development for AD in the future.


Assuntos
Disfunção Cognitiva , NF-kappa B , Ácido Oleanólico/análogos & derivados , Saponinas , Camundongos , Animais , NF-kappa B/metabolismo , PPAR gama , Simulação de Acoplamento Molecular , Transdução de Sinais , Inflamação/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Microglia
19.
Viruses ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400007

RESUMO

In the realm of clinical practice, nucleoside analogs are the prevailing antiviral drugs employed to combat feline herpesvirus-1 (FHV-1) infections. However, these drugs, initially formulated for herpes simplex virus (HSV) infections, operate through a singular mechanism and are susceptible to the emergence of drug resistance. These challenges underscore the imperative to innovate and develop alternative antiviral medications featuring unique mechanisms of action, such as viral entry inhibitors. This research endeavors to address this pressing need. Utilizing Bio-layer interferometry (BLI), we meticulously screened drugs to identify natural compounds exhibiting high binding affinity for the herpesvirus functional protein envelope glycoprotein B (gB). The selected drugs underwent a rigorous assessment to gauge their antiviral activity against feline herpesvirus-1 (FHV-1) and to elucidate their mode of action. Our findings unequivocally demonstrated that Saikosaponin B2, Punicalin, and Punicalagin displayed robust antiviral efficacy against FHV-1 at concentrations devoid of cytotoxicity. Specifically, these compounds, Saikosaponin B2, Punicalin, and Punicalagin, are effective in exerting their antiviral effects in the early stages of viral infection without compromising the integrity of the viral particle. Considering the potency and efficacy exhibited by Saikosaponin B2, Punicalin, and Punicalagin in impeding the early entry of FHV-1, it is foreseeable that their chemical structures will be further explored and developed as promising antiviral agents against FHV-1 infection.


Assuntos
Infecções por Herpesviridae , Taninos Hidrolisáveis , Ácido Oleanólico/análogos & derivados , Saponinas , Varicellovirus , Animais , Gatos , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Herpesviridae/veterinária
20.
Physiol Rep ; 12(5): e15961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418382

RESUMO

The role of NRF2 in kidney biology has received considerable interest over the past decade. NRF2 transcriptionally controls genes responsible for cellular protection against oxidative and electrophilic stress and has anti-inflammatory functions. NRF2 is expressed throughout the kidney and plays a role in salt and water handling. In disease, animal studies show that NRF2 protects against tubulointerstitial damage and reduces interstitial fibrosis and tubular atrophy, and may slow progression of polycystic kidney disease. However, the role of NRF2 in proteinuric glomerular diseases is controversial. Although the NRF2 inducer, bardoxolone methyl (CDDO-Me), increases glomerular filtration rate in humans, it has not been shown to slow disease progression in diabetic kidney disease and Alport syndrome. Furthermore, bardoxolone methyl was associated with negative effects on fluid retention, proteinuria, and blood pressure. Several animal studies replicate findings of worsened proteinuria and a more rapid progression of kidney disease, although considerable controversy exists. It is clear that further study is needed to better understand the effects of NRF2 in the kidney. This review summarizes the available data to clarify the promise and risks associated with targeting NRF2 activity in the kidney.


Assuntos
Nefropatias Diabéticas , Fator 2 Relacionado a NF-E2 , Ácido Oleanólico/análogos & derivados , Animais , Humanos , Fator 2 Relacionado a NF-E2/genética , Rim , Proteinúria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...